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SECOND ORDER ELLIPTIC EQUATIONS WITH LARGE FIRST ORDER TERMS
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ABSTRACT

This paper presents iterative methods for the numerical solution
of second order elliptic equations whose first order terms have coef-
ficients that are orders of magnitude larger than those of the second
order terms. Such equations arise in singular perturbation problems
and also in the numerical grid generation technique of Mastin and
Thompson. These equations exhibit boundary layer phenomena which
usually require an unevenly spaced grid for their numerical solutionm.
The methods are similar to successive overrelaxation, but have the
advantage of not requiring the user to supply a parameter. The methods
are shown to be stable even for variable coefficients by using the
theory of pseudo-translation operators developed by Vaillancourt.

Numerical results are presented and discussed.

This report was prepared as a result of work performed under NASA
Contract No. NAS1-14101 at ICASE, NASA Langley Research Center, Hampton,
VA 23665. :



I. Introduction

Consider the elliptic equation

auxx+ 2buXy Cuyy + dux + euy + fu=G(x,y) (1. 1)

defined in a domain © in ZR? . The coefficients are assumed to be

smooth, slowly varying functions of the independent variables (x,y),

and also
ac-b226>0

on § . If L 1is a reference length for (!, such as the diameter,

then we define the Reynolds number for equation (1.1) as

L|/d2+e2

R(x,y) = — ., (1.2)
A2(a+c)

In this paper we will consider elliptic equations for which the
Reynolds number is large, on the order of a thousand at least. We will
also assume that the coefficient f£f(x,y) is of the same, or less,
order of magnitude as the coefficients d(x,y) and e(x,y), and that
the coefficients a(x,y) and c(x,y) are of the same order of magnitude
with respect to the Reynolds number. Such equations as these arise fre-
quently in applications, usually as singular perturbation problems.

The methods presented in this paper are designed for the numerical
solution of elliptic eﬁuations with large Reynolds number. They formally
resemble successive-over-relaxation (SOR) and they will be.referred'to

as SRR - successive relaxation for large Reynolds number.



Unlike SOR which requires apriori khowledge of the iteration
parameter, in SRR the iteration parameter is chosen at each grid'point
according to a formula derived from a stability criterion. This formula
for the case of the frequently encountered five-point difference operator
is derived in Section V. Computational results are described in the last
section and the notable features of SRR are presented. The author is
currently working on a proof for the convérgende of the SRR method.

Iterative numerical methods for elliptic eqﬁations with sizeable
lower order terms have been studied by several other authors; we mention
only Concus, Golub, and O'Leary [ 2 ] and Widlund [10 1. They, however,
do not consider problems with boundary 1ayers and nonuniform grids which

are essential features of SRR.

I1. Boundary layers

The solutions of Dirichlet problems for elliptic equations with a
large Reynolds number frequently have boundary layers. Boundary layers
are regions near the boundary where the solution has very large gradients

and they are located at those boundary points where

a(x,y)(d(x,y)nx+e(x,y)ny) >0, (2.1

and (nx,ny) are the direction cosines for the interior normal at
(x,y) . The condition (2.1) can be established by the method of per-

turbation expansions (see Nayfeh [ 4 ], Van Dyke {9 D.




In the numerical solution of such problems a nonuniform grid is
frequently employed to place more grid points in the boundary layer
region. To study some effects of the grid on the solution we consider

the one-dimensional equation
u  +tRu =0 on O<x<l : ‘ (2.2)
with the boundary data
u(0)=0 , u(l)=1 .

There is a boundary layer at x=0, and to resolve it we introduce

the coordinate transformation
g=q(x) , q(0) =0, q(1)=1

where

q'(x) >0 and q'(0)<<1 .
Equation (1.4) then becomes

'u) +Ru_=0
(q q)q q ;
and this equation is approximated by the difference equations
h™2(q!,, (o, mu) ~q! (G, —u, 1))
i+t il i i-37i i-1

(2.3)

with



The solution to equation (2;2) is a monotone increasing function and
we will now examine equation (2.3) to see when its solution is also mono-

. tone. We rewrite equation (2.3) as

2q;
Rig ),
“i+1+“1+( Rh o (e 7Y
- o 2q'
_ 1—%) N
Tyt -1+(‘ A e X
Suppose u;4q is greater than ui . then we have
Zqi_l
ul_l+u + ha (u 1-u ) >2u, ,

or equivalently
Zqi_%
(ui_l-—u.) ( l—————)>0 .

If the solution to equation (2.3) is monotone then uy will be greater
than uy_q> and this requires that the second term in the above
inequality be negative. This shows that a necessary condition for

the solution to equation (2.3) to be monotone is that

Rh
94

<2 for i=0,1,+-,N-1 . (2.4)

o

The quantity on the left side of inequality (2.4) is called the

cell Reynolds number. Note that the condition is essentially

R(x -xi) <2, (2.47)

i+l

and it imposes a vestriction on the grid spacing.

4=




In computation it is seen that if inequality (2.4) is violated at grid
points away from the boundary layer then the reéulting oscillations are not
large and do not severely affect the‘accuracy of the solution. However, if the
inequality is violated in the boundary layer region then the oscillations
can be very large and &ill severely affegt the accuracy of the solution.

It should be mentioned that another difference scheme might lead
to a slightly different condition than condition (2.4) but it would still
be a restriction on the grid spacing similar to the restriction (2.4%).

It is also important to note that the cell Reynolds number condition is
a statement about the solution of the difference equations and is
independent of the solution procedure. For two-dimensional problems
and problems with variable coefficients the cell Reynolds number con-
dition remains approximately valid in the neighborhood of the boundary
layer. For énother discussion of the cell Reynolds number condition
see Roache [ 5 ], and for a finité element approach to this subject

see Christie et.al. [ 1 ].

IT1I. The SRR method, an example

Before introducing the method in general, we will consider as an

illustration the equation

u _+u +Ru +Ru =0 (3.1)
X yy x 2y

on the square



with u speéified-on the boundary; . To resolve the boundary layers we

introduce a change of coordinates given by
q=q(x) , p=p(y)
where q(x) and p(y) are smooth, strictly increasing functions and

q(0)=p(0)=0, q(l)=p(1)=1.

Equation (3.1) then becomes, in the new coordinates,
1] 'u + T ] +R T +R [ =
q'(q q)q p (prup)p 19 Uy T R,p u, 0,

where

This equation can then be replaced by a difference approximation using
a uniform grid in the (q, p) unit square. We write this difference

approximation only as

1,0 -1,0 0,1 0,-1
+ ’ ’
P13 Yie1y T M5 Yi-1y 7%y Yigea T iy Y1
—(m}30+m_%’0+m931+m93—1)u..=O ,
i3 1] i3 i3 i3

b .
where the coefficients mi’j depend on the precise form of differencing
bl

that is used.

Using the natural ordering of points and immediate replacement
this system of difference equations can be solved by the following

algorithm

ntl_ n {ml,Oun +Irl-l,Oun+l
ij ij ij ij i+1j ij i-1j

0,1 n 0,-1 n+l
s N i > A 3
Tm U Ty Vi1 (3.3)

‘(m].'30+mj!"o+m(.)fl+m(.)f_l) oy
ij ij ij ij ij

—-6-




The iteration parameter

i 5 is giveq by

(3.4)

W

0,1, 0,-1

15~ —
_ +./__///ml 0_ -1 0)2 . @log0h)?
@ +a10) (@ +m> )

where ﬁ==ml,O_mel,0_+m9,1_+mO,—l and the subscripts (i,j) have been

left off the m's for convenience.

This example will be discussed at more length in Section VI and
the derivation of the expression for wij will be given in Section V.
For now we only point out that for the particular case whose results
are given in the first part of Table I the number of interations
required for convergence is nearly constant, independent of R for

values of R between 6,000 and 80,000.

IV. The SRR method

We now present the SRR method in detail. We begin with equation
(1.1) and transform coordinates to the independent variables (x,¥)
in order to improve the resolution of the boundary layers. This
transformed equation again has the form of equation (1.1). We will
assume for simplicity of exposition that Q , the image of § 1in the
(x,y) coordinates, is the unit square. On Q we take a uniform grid

with points
Xy = @ghys aghy)

indexed by tue multi--index <x=(al,u2). The a; are integers with

-7~



s -1 .
where the quantities hi are also integers.

The difference approximation can then be written as

~ M u =G zc(' §\ (4.1)
3 s

iBr;?% o o+B o

for all multi-indices 2 with Xdﬁ€ (0. The norm of a multi-index

is given by
81 = (81,801 = 18,1 + 18,

The class of iterative methods we discuss here are given in general

by

NEXS N " ((E > n+l) 4.2)

&l <b OLB OL+B 18] <b aBY g+8

where

0 1
MO.B+MOLB = MOLB .

To determine the iteration parameter ug for this scheme, we will
study the symbol of the scheme. The symbol for the scheme (4.2) is

defined as

) e
ST S 1 3 M
* orto Yo Mt 158
Q 18T <b af

»



where £ = (51,52) with lgil < ™ . The iteration parameter wa

is chosen so that

lp(x,,8) <1, for [E] <. (4.3)

The definition of the symbol of the iteration scheme is in accordance
with the theory of pseudo-translation operators developed by Vaillancourt
[ 7 1. The condition (4.3) is motivated by the Lax-Nirenberg theorem
(Lax-Nirenberg [ 3 ], Vaillancourt [ 8 ]), which guarantees stability
for the iteration scheme when applie& for Q ='R2 .

For the remainder of the paper we make the following consistency

assumption.

Assumption 4.1. The difference approximation (4.1) satisfies

) RQIBTZb M8 SR C”‘El'z +1 & %)
<

for Jgil < 7™ and some positive constant c.

We now obtain an expression for “o Define the symbols

wt ml(x,£)= Z Mlﬁeig'B,
lgj<b O

=}
]

0 mo(xsg) = Z MS’-B eig, 8 ’
|8 <b

and
m = m(x,5) = mo(x,i) +ut (x,8)

From |g! €1 we have



or equivalently

- 2 2
2Rem ™t < =T - 097
From the consistency assumption we have
02 1,2
w_lz !ml - lml
-2Rem
*
Define u& by
1 me,Z - ,mllz
(WH™" = 5P — (4.4)
* o lglgm ~2Rem

For N in the interval [O,ugl the iterative method (4.2) will be
stable. Moreover, as shown in the last section of this paper, the
convergence rate of this scheme is optimal for wa equal to w;,
at least for the examples considered there.

Note that if Iml] is larger than |m0| for all values of &,
then the scheme is unconditionally stable in the sense that any positive
value of W, will satisfy inequality (4.3). We will not consider such

schemes here.

-10~




V.

Computation of w*  for special cases

We first compute w* for the case in which the iteration operator

has a five-point stencil given by

Equation (5.1) is of the

ntl _ n n n+l
ujs T gy +wij {aij U1 + bij LAy
n n+l (5.1)

+
i %5+t 915 %51

- n
'+cij+dij)uij 1.

- (aij +bi_‘]

same form as equation (3.3). As in the

previous section we have

where we have dropped the

Assumption 4.1 is satisfied when

m0 = aeie+cei¢- (a+b-Fc+d)

ml = be-le+ de_l(p

subscripts (i,j) and &= (8,94). Note that

a+b and c+d are positive,

—Rem = -Re (@ +mb) = (a+b)(1-cos 8)+ (c+d)(1-cos )

=2(a+b) sin2 326 + 2(c+d) sin2%$

We will use formula (4.4) to compute w

2 2 .
Imol —Imll = (a+b+c+d)(-Rem)
L2,
+ 2(a+b)(a-b-c+d)sin” 30
. 2
+ 2(c+d)(c-d-a+b)sin” 3¢

+ 4((a+b)(c-d)+ (c+d)(a-b))sin3b sin32¢ cos3(0 - ¢)

-11-



. Let

A=2(atb)a-b-c+d)
B = 2((a+b)(c-d)+(c.+d)(a—b)) ,
and C=2(c+d)(c-d~-a+b)
Then
lmol2 - |ml|2 < (a+b+c+d)(-Rem)

+ (A+|B] r)sin2 30 + (c+ |B|r-l) sin” 30 .
where r 1is an arbitrary positive number. If r is chosen so that

A+|Blr _ C+ B!yt

a+b c+d s

then

2 2
|m0| - ]ml’ < (a+b+c+d)(-Rem)

2 2
+ \/a+b+c+d)<(aa;%) + (Ccldd) )(-Rem).

This implies that

2 2
#-1 _ a+b+c+d 1 \/ ((a-b) (c-d))
. S = - e - =
W™ 2 5 +5 Jatbrerd) (S5 +tocrq ).

Moreover the above inequalities are sharp as can be seen by taking

6 =2¢/r — 0.

~-12-




Therefore

* ’ 2
w = - (5.2)

2 12
a+b+c+d + %a+b+°+d)((aa_+bb) +.(°c‘+dd) )

The reader is reminded that the coefficients a,b,c, and d are
all variable functions of the grid points and therefore w® 1is also
a function of the grid point.

We now consider the iterative method obtained from the checker-
board ordering. We will show that in this case w* is -also given by

formula (5.2). Analogous to equation (5.1) we have

un+l - un +w {a un+€ un+€
1j 15 T Y4 %15 Mg T Pag Yieag
nte n+e

€35 %3+1 T 943 %51 (5.3)

n
- (aij +bij +cij +dij)uij}

where €=0 for 1i+j even and €=1 for 1i+j odd. To obtain the
expression for wgg one sets

n  _ 2nte ik6 _id¢
z e e

e

obtaining the equation

Z . —1—(—1— - (a+b+c+d))
[N z\ W

= (a+b)cos O + (c+d)cos ¢ — (5.4)
+ i(a-b)sinb +i(c-d)sing¢

-13-



The value of w* 1is determined by,the’requirement that for w less

than or equal to w¥ the modulus of 2z is less than unity. Rather

than to proceed with this calculation an alternative approach is to

notice that if for the natural ordering one sets

n 2ntk+f 1ik8 1iz¢
Up = 2 e e
then the resﬁlting formula for =z 1is the same as equation (5.4). This

shows that the expression for w* is the same for both orderings.

For the iterative method whose formula is

n+tl _ n n n n+l
gy T upg gy tAgy (g 2ugy ey y)
n n+l n nt+l

T By (Ui g7 Vel o1 T Yo g4 T Y1 g

? 2un n+l

- +
* CyyQuygpy 20y gy

n n+l

+ -
Dis W41y~ Y513

)

+E..( n n+1

135417507

. *
an estimate for is given by

*.-1

") T > 3{A+C+D+E

L 2+Y/2 )@ JE[+c[D|)+ 4[B] (2 Y2 o]+ p+E])
A+C - fa-C)2 +16B2

This estimate of w* has been used to numerically solve the
elliptic equations that result from the grid generation technique of
*Thompson et. al. [ 6 ]. In the case that the grid has a high degree

—14-




of stretching the equations have a large Reynolds number.

results on this are presented in this paper, it has performed very

satisfactorily in many computations.

VI. Computational Results

The SRR method presented in this paper has been tested on the

differential equation

with several boundary conditionms.

by the mappings

where xb
and
and also

and

[od

= X

0

14+ (1-7c)(p-%)+40c (p—é)3—48c (p-%)S

are parameters.

+u
X

yy

Note that
dx
5 ©
dy =4y -
dp (0) dp @D 1+ 8¢,
d3x _ dzz dzz
dq dp dp

+ Ru
X

The coordinates were transformed

q+(1—x('))cl4

-15-
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<

X,y <1,

Although no

(6.1)



Employing a uniform (N+1)*X (N+1) grid in the (q,p) plane

the difference approximation is given by

1

v, ot '
qi(qi_*_% (ui+lj —u'j) -q

-2
130 ~95-3 (M35 ¥y-10)00
p(pl , (u —u, ) - p, (u,,-u.. ))h—2
j e i3Hl Ti30 0 Y33 i3 Tij-l
+ 3Rq. (u -u 4)h_l=0
2081 Wie1y T i1

for 1<i, j<N+1, where h=N1.

The first problem has the boundary condition

U(X,Y) = ] X—YI

for (x,y) on the boundary. An exact solution is not known for this
problem; however, the solution does satisfy

u(x, 1-y) = 1-u(x,y)

and for R large and &<y<1l-3

u,y) 2 ye e - Rya-y) .

In addition to the boundary layer at x=0, the solution to this problem

has appreciable gradients along the boundaries

y=0 and y=1.
The second problem has as its solution

2 -Rx
u(x,y) =(y(l-y) - —1{5- )e
and the boundary conditions specify that

u agrees with this solution
on the boundary.

-16-




The concern in this paper is with the convergence properties of the
method, and not so much with the accuracy of the results. For any
particular problem the accuracy of the results depend primarily on
having enoﬁgh grid points to resolve the boundary layer and having.a
coordinate transformation which places the gfid points properly. The
cell Reynolds numbers are a measure of the suitability of the placement
of the grid points. A second consideration is the criteria to terminate
the iterative method. In the following examples the iterative procedure

was stopped when

la® - ",

— <1077, ' (6.2)
1, -
The £2 norm in the above is given by
1
_{.-2 2 \2
lell, = (w22 Tei? )" -

Xaeﬂ

The convergence criterion of 10-4 in inequality (6.2) was chosen because
it was small enough to achieve satisfactory answers and yet large enough
so that it was economically feasible to make the large number of rﬁns
required for testing the algorithm.

In Tables I and II are shown the results of solving problems 1 and 2,
respectively, by both the checkerboard and natural orderings for different
values of the grid size N, the Reynolds number R, and the coordinate
transformations. In these tables the value of w, was always taken to
be w; as given by equation (5.2).

Notice from Tables I and II that for a given grid size, coordinate

transformation, and ordering the number of iterations required for

-17-



convergence is essentially ihdependent of R ; However, when the cell
Reynolds number at x=0 is near or above 2 the éonvergence

rate becomes poorer and the solution itselfAbecomes highly
oscillatory.

Included at the end of Table I are calculations for the equation

u_ +u +Ru +68Ru=0
XX yy x .

for 6=0.5 and §=1.0. The value of w, was the same as derived in
Section V for the case 6 =0. The computations indicate that stability

is maintained for lower order terms of the same order as the first order

terms.
Table ITII shows the effect of taking wa as a multiple of w; for
the case when N=40 and R=40,000. The number of iterations required

for convergence was least for wu==w; and‘for w, larger than w; the
method does not converge at all. Similar results were observed for
other values of N and R but are not-displéyed.

In Table IV is shown the relationship between the number of grid
points along one side of the grid, N, and the number of iteratioms
required for convergence. For both the checkerboard ordering and naturai
ordering the number of iterationé is proportional to N for larger values
of N. This shows that p, the radius of convergence of the iterafive

scheme, satisfies
-1
p=1-C/N+o(N )

and, from the earlier comments, C is independent of R . A similar
formula holds for SOR when the iteration parameter is chosen properly

(Young [11 1), and this is an indicacion of the efficiency of che method.

-18-




More specifiéally, we have from the results of Table IV that for the

checkerboard ordering the radius of convergence satisfies

- 5.8
p=1 N
and for natural ordering
4.6
p=1_ N .

By comparison, using SOR to solve Laplace's equation on the unit square

with a uniform grid the radius of convergence satisfies
2w
p=x1-~ N

This shows that using SRR for elliptic equations with large Reynolds
numbers is about as efficient as using SOR for elliptic equations with -

very low Reynolds numbers.

VII. Conclusion

The SRR method introduced in this paper is a stable, eéficient
algorithm for the numerical solution of elliptic equations with large
Reynolds number. The formula for the iteration parameter givén in
Section V for the five-point schemes gives convergence rates that are
essentially independent of the Reynolds number over a wide range of

values.

~19-
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TABLE 1. Results'for Problem 1.

Grid | Reynolds No. Iterations Iterations Cell
Parameters (thousands) Checkerboard Natural Reynolds No.
Ordering Ordering at x=0
N =40 6 70 86 .15
x} = 1073 10 70 87 .25
1
y(,) -0 30 71 89 .75
60 72 S0 1.5
80 72 90 2.0
90 74 122 2.25
100 108 130 2.5
N =40 80 107 120 .20
x} = 1074 100 109 125 .25
gt = 300 102 119 .75
0 600 115 130 1.5
N=40 10 94 109 .25
x6==10_3 30 101 118 .75
. 60 103 120 1.5
Yo = .5
80 104 121 2.0
Reversed 10 81 .25
Natural 30 85 .75
Ordering 60 87 1.5
80 92 2.0
N =380 100 130 165 1.3
x} = 1073 130 130 165 1.6
, 160 130 165 2.0
¥,=0
180 131 165 2.3
N =40 §=.5 10 101 .25
x4 = 10-3 30 112 _ .75
Yé _ s 60 115 1.5
80 116 2.0
§=1. 10 112 . .25
30 128 .75

60 132 | 1.5

-21-~



" TABLE 2. Results for Problem 2.

Grid ' Reynolds No. Iterations Iterations Cell
Parameters (thousands) Checkerboard  Natural Reynolds No.
Ordering Ordering at x=0
N=40 6 47 46 .15
x} =107 10 76 73 .25
¥ = 30 75 73 .75
40 67 58 1.0
60 80 76 1.5
80 93 92 2.0
90 98 87 2.3
100 103 99 2.5
N=40 80 89 85 .20
x) = 1074 100 95 94 .25
y6= 300 92 91 .75
600 153 149 1.5

-22-




TABLE 3. Iterations for w as a multiple of w* in Problem 1.

) . . ) . 3 '= _
R = 40,000, N=40, X, 10 7, Yo o . Wy, = Nw
n Checkerboard Natural
Ordering Ordering
.80 89. 105
.90 ' 79 97
.95 75 93
-1.00 72 89
1.01 ’ . > 200 > 200
1.05 diverged diverged

-23=



TABLE 4. Iterations as a function of N in Problem 1.

= "= A —3 w! = = *
R= 40,000, ,XO 10 -, 0 0, wa Wy

N Checkerboard Ordering Natural Ordering

Iterations Iterations/N Iterations Iterations/N

20 64 3.2 72 N 3.6

40 72 1.8 89 2.2

60 101 | 1.7 127 2.1

80 130 1.6 . 163 2.0
100 155 1.6 202 2.0
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